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A detailed topological analysis is given, both for the standard orbital current density and for the complete
orbital current density. The concepts developed here provide a very useful instrument for the deseription of
the vector field of the magnetically induced currents and should be very helpful for the understanding of the
contributions that different regions of a molecule give to its magnetic properties. The ingredients for this
topological analysis are {1} the symmetry properties of the electronic Hamiltonian in the presence of the
magnetic field and (2) the nature of certain singular points. Two categories of singular points are considered:
{1} Nodal vortices which have associated a circulation around a nodal line and may be of the axial or toroidal
types as previously considered by Hirschfelder; {ii] Stagnation points where the current vanishes without the
vanishing of the charge density. There is a considerable variety of stagnation peints and, under certain
conditions basically on the magnetic field, they may have assoeiated a vortical circulation of currents in their
immediate neighborhood. For the complete orhital current {defined as the sum of the standard orbital current
and the orbital exchange current), the stagnation points may occur isolated or they may form stagnation lines.
When the regime of the circulation around this line changes between vortical and normal, 2 new type of

stagnation point, the transition point, is found.

i. INTRODUCTION

Maps of the probability current density induced in a
ground state molecule by an exterpal magnetic field have
been used in the past to describe the way in which the
electronic charge reacts to the external field. Some
time ago, Lipscomb and co-workers' reported ab initio

results for diatomics and, very recently, Lazrzeretli and

Zanasi?™* started reporting the results for larger mole-
cules which are obtained with a newly developed set of
ab initio programs, The maps obtained are rather com-
plex and some sort of topological analysis is needed for
the understanding of the three-dimensional vector field
from its two-dimensional projection maps, and this will
algo be helpful for the extraction of quantitative informa-
tion outof them. Riess® analyzed the nodal structure of
the N-particle state function to discuss the probability
current density. Hirschfelder® discussed what he called
the axial and toroidal vortices formed by the current.
The axial vortices have angular momentum and will thus
interact with external homogeneous fields. In the ab-
sence of external magnetic fields, this angular mo-
mentum is quantized, provided the state function is an
eigenfunction of I:l. The current density was also found
to vanish at points where the charge probability density
is nonzero but these stagnation points (as they were
called®®’) attracted less attention. Bader and co-
workers’ made a topological analysis of the molecular
charge distribution by looking at the orthogonal tra-
jectories (Collard and Hall®), especially at the singular
points of the charge density (points where p and Vp
vanish},

The purpose of thig paper is to discuss the topological
elements which may appear in the vector field of the
orbital current densities induced in a molecule by an
external, constant, homogeneous magnetic field. This
is done by (i) looking at the symmetry of the electronic
Hamiltonian for the molecule under an external magnetic
field and (ii) considering the behavior of the current
density (vector) field at the neighborhood of certain sin-
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gular points., These are the points where the current
density agsociated with each contributing natural orbital
vanishes and are called nodal vortex points (V) or stag-
nation points (S}, depending on whether the charge prob-
ability density is zero at their location or not., A com-
plete classification of the types of singular pointg ig
presented, Ome rather inconvenient feature of the orbit-
al currents usually defined is their nonconservation
which makes the interpretation of the maps still harder
and sometimes misleading, To avoid this problem, the
orbital currents analyzed here are the complefe orhital
current densities which inelude the exchange currents,®?

In Sec, II below, the general formalism of the mag-
netically induced current density is reviewed. A Car-
tesian second rank tensor is defined by the spacial dif-
ferentiation of the (standard or complete) orbital current
density. This tensor is instrumental to the topological
analysis made in subsequent sections, In Sec, III, the
technique of topological analysis is applied to the stan-
dard orbital current density. The regime of flow near
the stagnation points is found to depend on the magnitude
of the applied field, The analysis of the complete current
density in Sec. IV starts with a discussion of the sym-
metry of the exchange currents and their behavior near
points of high symmetry, Critical points of two cate-
gories are found to exist in general; nodal vortices and
stagnation points, and these may occur isolated or may
form lines. Finally, in Sec. V, the major topological
properties of the orbital currents are summarized and
the particular case of homonuclear diatomics is dis-
cussed in some detail as an example of the application
of the theory developed earlier.

1l. GENERAI FORMALISM

Consider a N-electron molecule under the effect of an
external homogeneous, constant magnetic field, Within
the Born~Oppenheimer approximation, the many elec-
tron state function (spin is disregarded throughout)

T=0(r, 1y, ...,I) (1)
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is driven by an electrosgtatic Hamilionian of the form

1 S fr 2
H= Z(TV+6A)

a0

2 2 7
e E 1 € 3 ¢
T 2
+ 8“50 o lru “r. | 4;750 ; ;rn i'a? ; i )

1

where A is the vector potential associated with the ex-
ternal field and (Zae) is the charge of nucleus ¢. If an
arbital approximation is used for state function {1}, it is
well known that the charge probability current density

may be written in terms of orbital components For an
orbital ¥,(r), the standard curreat density® ' i
i
jk(r)—-—-m—Re‘ll T VreA)T, | (3)

When the ¥, are natural orbitals, ' the total many elec-
tron current is given by

)= 2w dfr) (4)
r

- where #, is the occupation number of orbital ¥,; the
corresponding expression for the charge probability
density is

plr)= Y pulr) (5)
&
with
pulr) = —e¥i¥, | (6)

While the many electron current j satisties the con-
tinuity equation and is therefore divergenceless,

v.j=0, {7)

the same is not true in general for the orbitfal components

defined in the standard form [Eq. (3}]. A source func-

tion §,{r) may then be defined,
Sk =V- jk s (8)

To campensate this lack of conservation, Atking and
Gomes?® introduced an orbital exchange current j;*" such
that

V=S, ®
The complete orbital current jj,
RS IS e (10)

ig dwergenceless. The source function may be calcu-
lated!® in terms of the nonlocal potential N in the Hamil-
tonian associated with orbital ¥,

2e

Se=—m Im(Ey V¥, , (11)
and a scalar potential V¥, may be obtained from this
source function {by analogy with electrostatics)

e [ e S (12)
FE o
Introducing
P =vv,, (13}

the defining equation {Ea. (9 is automatically satisfied
becauge of the well-known relation v3(1/r) = ~475(r).
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has been shown'” that this exchange current does not
contribute to important classes of orbital properties,
but it may induce electromagnetic transitions. 1

A. Singularities of the current density

The topological analysis below depends on the behav-
ior of the current field near the points where if vanishes,
the singularities of the vector field, This is achieved
by considering the Taylor series expansion

) =(r wry)- {Vj“;),o +Hr ~rHr ~1y): (V‘Vji,}‘.B beae ,(14)

Of particular importance is the first term which depends
on the second rank Cartesian tensor (vi%) which may be
separated into its components of weighis zero, one, and
two, 13

('{?']k) =p=0""+ D" +D%? . (13)
The zero- weight part o' contams the trace
p=(v.§), Ao (18)

where I denotes the unit second-rank tensor. D is
the antisymmetric part and is related to the curl of the
current j3,

0 oy ~Cg
D‘”=%~ ;Cz 0 o , (17}
€ =~y O

with
{18)

The irreducible weight-two part B? is the symmetric
traceless part of the Cartesian tensor, which may be
written

(Cbcz,Cs) c= (inkr -

p® =D +D*) ~ D, (19)

where B’ denotes the transposed of o,

Expreasions for the divergence and the curl of orbital
current are obtained now for lateruse, 'The orbital ¥,
is, in general, a complex function which may be sep-
arated into its real and imaginary parts ¥, i\?éﬂ'\lfio
The standard current {Eq. (3)] takes the form

e?
- ;j““(‘l"k VI ¥ V) - N e ALCE + (BEF] {20)

The divergence and curl are calculated directly

Vo= —-(\iffvz% AP RIGEA AL
@1)
vxly= =2 E vy ve + l(wp? + (@i
g

AEERL SV (22}

Alternatively, the orbital function may be written in
polar form
F (23)

¥, = Vo, /(= e) exp (3% &
where p, is the charge probability density [Eq. (8)] and
&, 2 phase function well defined outside the nodes of p,.

J. Chem, Phys,, Vol. 78, No. 7, 1 April 1983



J. AL N. F. Gomes: Topology of magnetic currents

The standard current density [Eq. (3)] takes the form

. 1
J2= — (Vg +e A} . (24)
I,
and ifs divergence and curl are
. 1 i
Vo= = 0 Vit —— V0, (Vo + eA) (25}
Wy i,
: 1
VX}k=—~e—-pkB+——Vph % (Vi,+eA). (28)
i, W,

For the exchange part, the definition [Eq. (13)] implies
that it is irrotational and its divergence is simply given
by Eq. {(3).

jti. TOPOLOGY OF THE STANDARD CURRENT

Some basic topological features of the standard orbital
current dengity j, were considered by Hirschielder and
co-workers, ® [especially in Ref, 6{(f)]. However, the
specific consequence of its nonconservation [Eq. (8)!on
the nature of the vortices and on the different types of
stagnation points were not discussed. One consequence
of this nonconservation is that lines of currents cannot
be drawn, as these lines are not clogsed and the gsources
5, extend continwously over space, Of course, plots may
be prepared showing the direction of the current density
at each point, but these must be interpreted with care

and should not be confused with plots of lineg of currents,

A. The nodal vortices

One category of singular points for the topological
analysis of the standard current j, are the nodes of the
charge density p, where the standard current does
necessarily vanish [Eq. (20)]. The vanishing of the
charge density implies two conditions, one on the real
vart and the other on the imaginary part of the orbital
funetions ¥,. This results in nodal regions that are nor-
mally lines which may be closed upon themselves or
may extend to the limits of configuration space. The
current whirlpools asscclated with these nodal lines
are toroidal vortices, in the first case, and axial ver-
tices, in the second.

A velocity field v, may be defined cutside the nodes of
Dres '

v—_lj
|4 pkk-

(27}
The circulation of this velocity around a circuit may be
calculated using Eq, {24)

1
el

e
+ ‘I)B:

fdr-vk=n2?f n=0, x1, £2,,. ., {28)
W,

&
where & is the flux of the magnetie field across the eir-
cuit and » is zero if the circuit does not surround a
nodal line,

The behavior of j, near the nodal line may be studied
using the D tensor [Eq. (15)]; in particular, the integer
n in Eq. (28) is related to it in the important case of
symmetry determined nodes. The D tensor at a nodal
point may be calculated using Eq. (20) for the current.
It is antisymmetric and completely described by the
vector ¢ [Eqg. (18)},
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ek

e

¢=m2 {28)

(Vg X 78}y,

which ig directed along the nodal line at the vortex node
(1) considered. To first order in the displacement from
the node, the current [Eq, {14}] is of the form

eff
A

1Ry = = — [ (vE] xv¥i), | Rilg , (30)
where R is the cylindrical radius and #g, #, are the
radial and angular {eylindrical} unit vectors. The
charge density at a distance R from the nodal line is

given {to first obder) by

pRY= RE [itg - (U B+ [, - (w8), ).
The simplest case ig that of Dy, local symmelry, when
the real and imaginary nodal surfaces intersect at right
angles and |v¥7{= |v¥il, Direct calculation of the cir-
culation integral [Eq. {28)] leads to the zero-order (in
R) term 27k /m,, showing that #=+1. (The sign depends
on the choice of the sense of circulation.} The argu-

(31}

.ment may be generalized to higher order symmetries

D,, by considering that symmetry functions behave near
the node like R"exp(in8), with which is associated a
circulation number x (see Sec. IV),

B. The stagnation points

The current density may vanish at points other than
the nodes of the charge density. Equation (24) implies
that the following condition is satisfied at these stagna-

tion points (S):
Vi +e A=0 {32}

The D tensor has in general components of weights zero,
one, and two

1
p0= L o (sta,1, @)
i,
pW. e £ o, B (34)
: g TR '
L1 1L 5
D%l = — pk[(‘?‘?m}s —(ng’)k)SI . (35}

2

The general analysis of this D tensor for the behavior
of the currents near the S point is difficult. If there
were no magnetic field present, the problem would be
recduced to that of a potential ¢, that is conveniently
studied by the method of the orthogonal trajectories.
Assume that a; > o, > oy are the real eigenvalues of the
Hessian matrix (D + D), The stagnation point is
classified by a pair of numbers (rank, signature), the
rank being the number of nonzero eigenvalues and the
signature the excess of positive over negalive eigen-
values. The trace of D gives the value of the source
fanction

{38)

Sp=o T+ 0y .

. A similar analysis was applied by Bader ef ol.”®’ to the

charge density using the Hesslan VVp,,

I shall consider now the effect of the antisymimetric
part B, If it ocourred alone, it would produce a
eylindrical eirculation around the stagnation peint with
the axis alang €. This current is of the form (e /mip, Al
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FIG. 1. Effect of a perpendicutar magnetic field on the eigen-
values of the D tensof.\ These are real for syall fields
Vepy,Bfm,| € (o —az)n‘\.\

=

with the origin of the vector potential af the stagnation
point, The general analysis is not very illuminating,
The detailed study of a very particular case will do
better to clarify the joint effects of the symmetric and
antisymmetric parts, Assume that the D tensor is ex-
pressed in the local frame that diagonalizes the sym-~
metric part and that, in this reference frame, the vec-
tor ¢ has just one component ¢q

o, ¢/2 0
p=|-c/2 @ O . (37
0 0 Oy

(These conditions are fulfilled, at least af points on an
axis of symmetry of the molecule, if that axis is paralle
to the external magnetic field.) The eigenvalues of the
matrix [Eq. {37)] are o, and

oy +ap=V{a, =B ~c?).

Let us consider the piane defined by the eigenvectors
associated with eigenvalues o, and @, of the Hessian
matrix (D'? and p?). The dependence on the field is
represented in Fig. 1. The eigenvalues remain real
when the following condition is satisfied:

£ o BIT ey — o) . (38)
W,
j (&3]
1)
Y
B=0 B <Berit
FIG. 2.
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The magnetic field is a control parameter and the equal-~
ity sign in Eq. (38) corresponds to a fold catastrophe, 1
For higher magnetic fields, Eqs. (38) is not satisfied and
the eigenvalues become complex. This corresponds to
2 change of regime of circulation of currents near the
stagnation point. This effect of the external field is
visualized in Figs. 2 and 3, where the cases o, >0, >0
{Fig. 2} and o:>0 >e,, (@, +0,) >0 (Fig. 3) are congid-
ered. It shouldbe stressed that the quantity (e /m )p, i B/ ]
in Eq. (38) is the curl of the current density j, at the
stagnation point [Eq. (28)]. The arrowed lines in Figs.
2 and 3 cannot be interpreted as lines of current; all they
give is the direction of the vector j, at each point in the
neighborhood of the stagnation point, One important
feature fo notice is the resemblance of the high field
(vortical) regime to the pattern of currents in a plane
perpendicular to a nodal line; and, of course, in a degen-
erate or near degenerate case (o ~a,) this is the only
regime observed for any size of the external magnetic
field. This similarity might lead to incorreci assign-
ments in maps of magnetic currents,

iV. TOPOLOGY OF THE COMPLETE ORBITAL
CURRENT

The complete orbital currenat is a divergenceless vec-
tor field formed by the addition of the exchange current
to the standard orbital current [Eg. (10)]. With the ex-
change part defined by Eq. {13), while most orbital
properiies are not changed!? the topology of the complete
orbital current may be markedly different from that of
the gtandard one. In this section, I shall consider first
the properties of the exchange current and then analyze
the topology of the complete current,

A. The source function

The source function S, is given by Eq. (11), where the
nonlocal potential Nisa conseguence of two body inter-
actions. §, is therefore a homogeneous quadratic form
in the orhitals ¥, and also in their complex conjugates
¥¥, If the orbitals are agssumed to be syrametry adapted
functions cof the molecular point group (field not con-
sidered), the source function §, transforms like the rota-
tion R, (z along the external magnetic field), A more
rigorous symmetry treatment which requires the conzid-
eration of time inversion and space-time point groups is
given elsewhere.'® The potential V, [Eq. {12}] is gener-

*k ®

B=Berit B>Berit

Effect of an increasing magnetic field on the standard orbital current ciculating near a stagnation point (¢, > @, >0}, At

the critical value By = (o —@)m,/ep, there is a change from the normal to the vertical regime.
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B=Berit B>Becrit

Effect of an increasing magnetic field on the standard orbital current circulating near a stagnation point (¢, >0 >,

@+ 0y >0). At the critical value By = (2 — g}/ ep, there is a change from normal to vortical regime.

ally a smooth function extending all over the molecule
and its gradient gives the exchange current according to
Eg. (13). The symmetry of 2% may be directly obtained
from that of §,. The D tensor associated with §*°" at

any point of space is symmetric and its trace is {~5,).

It is useful to study its symmetry determined stagnation
poinis ag they may coincide with those of j,, thus being
also stagnation points of the complete current. Partic
ularly interesting are points aleng the principal axis of

a D, point group molecule, but the theory below will
apply equally to any situation where that is just the local
symmetry. .

Let the scalar potential V, [Eq. (12)] be expanded in
spherical tensors arcund the stagnation point

o« +

Viirg+p)= o ; 2 Dyt

=0 m=-1

(39

where 1y is the position of the stagnation point congid-
ered, » is the spherical radius, and ¥'T is a spherical
harmonic (a function of the angular coordinates}, The

D, symmelry imposes certain constraints:
If n even: I even; m=41n, +3n

If » odd:

+2n,

EEEE

either J even; m ==+2n; £4n, ..

3

or lodd; m=xn, z3n, .... (40}

in the plane perpendicular to the C, axis (the xv plane),
the spherical tensors ' ¥ T reduce to the polynomials
listed in Table I; for each value of n, the leading {lowest
I+ p) expansion polynomial is gshown. Also listed in

Table I are the gradients of the potential terms d*™ ()~
the exchange current contributions-—and the directions
of their orthogonal trajectories. These results may be
summarized by saying that a D, stagnation point of the
exchange currents may be analyzed by the method of the
orthegonal trajectories with a xnth degree potential,
leading to the determination of 2» orthogonal trajec-
tories; of these, » converge fo the center and aliernate
with those which diverge, The trace of vi®*® vanishes
in any of these cases.

B. The complete orbital current

The complete-orbital current density is considered
now, The associated I tensor given by Eqg. (15) is
traceless by Egs. (8}-(10) and therefore, maps of the
lines of current may be drawn to describe the direction
and intensity of the current field, The antisymmetric
part D’ is defined by vector ¢ [Eq. (18)], which is of
the form [Eq. (26)]

e 1
c=—p,B+—Vp, xj, .
7, Py PG Ie
The symmetric part has the general form

D®= [vo ¥, +eA) +{Vo, + eA)vp,]

2m,

+ P, VY, +VVV,

e

The complete current density j§ may vanish at two catew

TABLE L. Leading expansion polynomials [for Eq. (39}] and the corresponding expansion functions for the exchange
current density for points at the principal axis of a systerm of D, symmetry. (r the spherical radius and ¢ the

longitudinal angle),

Orthogonat trajectories

P 2"y, 8) a9 e, v Ta™ (x, v} = -%- 2 e, vk é?-;d(“’ {26, 7} {angle ¢ in degrees)

2 »* sin 20 2xy 29; 2% 45; 135

3 I sin 30 3yt v ---_\;3 Bxy; 30 -—yz} 0; 60; 120; 180

4 v sin 40 43y o dogy 48z s 4x® = 3xp?) 22.5; 67.5; 112,5; 157.5
5 +*sin 58 Bty —10x% p% 10 200 —xy%; 5(xf -6y 4yY 18; 54; 90; 126; 162

B »¥sin 6o 6"y — 205 % 1 6y’ BBty ~10x% 7 +9%); 60 ~105°y% +6xy?)  15; 45; 75; 105; 135; 165
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gories of singular points: {a) nodal vortices {V), where
§5=0 and p, =0; (b) stagnation points (8), where j;=0 but
p,#0. Nodal vortices of the complete current are far
less common than those of the standard current j,. In
fact, most of the nedal vortices (the toroidal and some
axial) are digplaced from their location (for the standard
current! by the additive exchange current, This mech-
anism originates stagnation points of rank two, unex-
pected for the componeats j, or 1250 these points may
constitute infinite lines or closed ioops. A nodal vortex
of the complete current may still exist when the exchange
current vanishes at the nodal line, This oceurs when the
magnetic field is parallel to an axis of symmewry of the
molecale, which is a node of p,. This nodal vortex has
the same properties as discussed in Sec, I for the
gtandard current; in particular, its circulation number
s in Eq. (28) is the degree of rotational symmetry of the
orbital. An argument similar to that leading te Table I
above, suggests that an orbital with a C, axis of (maxi-
mum) symmetry behaves near the axis like +" exp{zin 6},
direct calculation of Eq. {28) with this function leads to
a value £n for the circulation number,

Stagnation points may be clagsified according to rank
and signature (as in Sec. TI). The traceless condition
restricts the possible types to (3, £1), (2,0), and (0,0},
oy Sy 5@y, & +0,+0;=0, are the three real eigen-
values of B® the matrix D may be written in the local
frame of reference defined by the eigenvectors inthe form

Gy Cs  —Cp

(41}

—-C3 G &
PO <
This nonsymmetric matrix has real eigenvalues when
(a0 + 0ty + gty + | €]?)?

+ 2L {0y g + 0y 0% + 0yl F el 20 . (42)

When the equal sign holds in Eq. (42), there is at least
two degenerate eigenvalues., If Eq. (42) is not satisfied,
two of the gigenvalues are complex and a vortical re-
gime sets in,

Assuming the exchange current i£*" to be a small and
smooth function in the region where j, has a nodal vor-
tex, its effect upon addition to form ji is likely to be that
of displacing the nodal vortex, converting it into a stag-
nation line. This displacement r is given approximately
by the solution of the equation

zexch

Fe

the distance from the nodal line being of the order
1j2*"[/lc |. For stagnation points on the displaced nodal
line, one of the eigenvalues is zero and the other two
may be either (i} real symmetric or (ii) pure imaginary
conjugate. The conditions Lo be satisfied by D [Eq. (41)]
in gach of these cases are as follows:

+exr=0, 43)

(i) Normal regime. (Eigenvalues: 0, £)
s’ Oy Oty Oty + Oth% + azcg + ozacg =0,
Loja, + o0, +ag0q + ]2 =-a2<0 . (44}

(ii) Vortical regime. (Eigenvalues: 0, xiX)

J. A. N. F, Gomes: Topology of magnetic currents

' .2 g, 2.
[ OOy + QO]+ a0 + 803 =0,

| a0, + 00 + gy + 1C1E=2750 (45)

These are effectively tyvpe (2,0} stagnation points and

the change over {rom regime {i}— (ii} is made through a
type {0, 0) point. The stagnation lines may be open and
infinite or closed, forming a loop. In any case, they are
made of stagnation points of type (2,0}, possibly with a
discrete number of points of type {0, 0), where a change
of regime may occur, Stagnation points may also occur
isolated, and these are of types (2, + 1) with a normal or
a vortical regime, depending on whether Eg, [42) is sat-
isfied or not.

V. CONCLUSIONS

The main goal of thig paper is to give the basls for a
topological analysis of the complete orbital current, and
this will be of primary importance to gain some under -
standing of the molecular properties rom the maps of
the current density., The complete orbital current is
preferred to the standard orbital currents [Bq. (3Y] due
to the difficulties arising from the noncongervation of
this vector field. This is achieved through the consider-
ation of the exchange current [Eg. (13}] which is a sim-
ple longitudinal vector field related to the scurce func-
tion {Eq. (9}]. The topology of the complete orbital cur-
rent depends on certain singular points where it vanishes.
These are of two kinds, depending on whether (a) the
charge density also vanishes —nocdal vortices —or )
not —sgtagnation points, The nedal vortices are asso-
ciated with the nodal lines of the orbital state function
and these may be infinite (axial vortices} or may form
clogsed loops {toroidal vortices). Thiese nodal vortices
have 2 nonzero circulation number {Eq. {28)] and the
properties discussed by Hirschielder,®® Nodal vortices
of the complete current are lee= frequent than those of
the standard current due to the contribution of the ex-
change current, Some of the nodal lines, however, are
symmetry determined in such a way that the exchange
current also vanishes at their location, Other nodal vor-
tices of the standard current are moved away from the
nodal line by the exchange part of the current criginating
stagnation lines, The general theory of stagnation
points given in Sec, IV shows that they may be classified
according to {rank, signature) into three major types:

{i) Isolated stagnation points (3,+ 1), The regime of
flow near these points depends on whether condition (42)
is satisfied or not. If it is with the less than sign, the
regime is normal with three well-defined eigendirec-
tions, If Eq. {42) is not satisfied, there is a vortical re-
gime of flow in the neighborhood of the critical point.

(ii) Stagnation lines (2,0}, These may be open ex-
tending to the limits of configuration space or closed
forming loops. They are exXpected to result from the
displacement of the nodal vortices of the standard cur-
rent, The regime near the line depends on which of the
conditions, {44) or (45), is satisfied. The transition be-
tween the normal and the vortical regimes is made at
points {(iii},

{iii) Transition points (0, 0}). These are the points of
the stagnation lines where a transition of regime occurs,
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TABLE 1L
{to first order) perpendicular to the interatomic axis,
critical point at the center of the molecule.

4591

Molecular orbitals of 3 homopolar diatomic molecule in presence of 2 magnetic field
In the last column is indicated the type aof

Type of eritical

. Real part Imaginary part point at the
MO D o5 Symmetry {Dgz Symunetry (Dyp MOLD ) origin
Oy A, By, T {x)
Oy By, B Ty (%) v
T[u(z) Biu Au aan -
T, (x) [: 2% By, 7, 14
Te (2} Bay By, . .
77, {1} By, A, 7 s

A. Etxampie: Homopolar diatomics

As an example of application, | shall consider the case
of homopolar diatomic molecules with the magnetic
field (z axis)} perpendicular to the internuclear (y) axis.

The molecular states are classified in relation to the
D, , molecular point group. The magnetic field reduces
the symmetry to J,,'® (in fact, a space-time point
group®® isomorphic to D,,), In Table II are listed the
symmetries of the molecular orbitals in the conventional
notation followed by their symmetry in relation to the
group D,, and the states which are mixed in by the mag-
netic field to first order. These are, in fact, the sym-
meiries of the imaginary parts of each molecular orbital,
Consider the cases of molecules N, and F,, with elec-
tronic configurations!’

N, : KK 262202307 1} (lowest unoccupied MOs : 11; 30,),
F,: KK 20220%3021n % 1n! (lowest unoccupied MO: 3a,) .

Major contributors to the first-order current density
may be expected to involve the transitions 3o, - 17,{x)
and 17,(x)—~ 3¢, in N, and just the second one in F,. This
allows the prediction that there may be an axial vortex in
fluorine while, in nitrogen, the superposition of an axial
vortex, with a stagnation point at the origin is expected,
Lipscomb e? al. %% @ reported results for the (standard)
current density in these systems which fit well with these
predictions, In aitrogen,'' the eenter of the molecule
resembles a stagnation point of the type shown in Fig. 3
(B < B, Influorine, 'Y the center resembles closely
a vortical circulation in agreement with the prediction
above. When the gauge origin ig taken af one of the
fluorine naclei, the position of the vortex is displaced!?
but this must be due to errors inherent in all caleulations
of this type. '

If the exchanged paris were computed to form the com-
piete orbital currents, the nature of the critical point at
the origin and itg axial vortex {when it exisis) are not a
affected. Elsewhere, the topology of the current field might
change noticeably, as discussedin the previous section,
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